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Abstract

The standard permanent and transitory income model is known to be misspecified.
Estimates of income volatility within this model differ depending on the specific data
moments used — whether they are in levels or differences — and how these moments
are weighted during estimation. We suggest a simple modification to the standard
model: Allowing for two transitory shocks that persist for different lengths of time.
Our proposed model, which uses the same number of state variables and introduces
only one additional parameter, consistently and accurately identifies the parameters

of the income process, regardless of the estimation method used.
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1 Introduction

[T]he key challenge for future work is to develop a specification for the wage
process that is both parsimonious enough to be used as an input to incomplete-
markets models, and rich enough to account empirically for the covariance

structure of wages in both levels and differences.

Heathcote, Perri, and Violante (2010, p. 40)

What is the nature of idiosyncratic income risk faced by households, and how has it
changed over time? The related economic literature centers around a model of permanent
and transitory income. In this standard model, households face a series of income shocks.
Some of these income shocks permanently (or persistently) affect income, such as a job
change or promotion. Others only have transitory effects on income, such as a bonus
or a period of sick leave. However, although widely used, this model is known to be
misspecified. If the model was accurate, the permanent and transitory components’
estimated variances would be consistently estimated regardless of how the estimation
is performed. In practice, the choice of income moments (levels of differences) and the
weighting matrix applied to those moments in a minimum distance estimation (optimally,
diagonally, or equally weighted) lead to different conclusions about the importance of
permanent versus transitory income risk.

In this paper, we make one change to the standard model of idiosyncratic income: We
divide transitory shocks into two flavors. “Bonus” shocks (which can include classical
measurement error) display no persistence, while “passing” shocks persist for a stochastic
period. Estimation using Norwegian administrative data indicate that transitory income
risk is best described by a mixture of bonus and passing shocks.

We simulate our proposed model and show that when we estimate the standard model
on the simulated data, we find evidence of the same type of misspecification as in actual
data. Indeed, with the most commonly used weighting—diagonally weighted minimum
distance (diagonal)—the permanent income variance is higher and the transitory income
variance is lower when estimating the standard model with difference moments than
with level moments. This structure of misspecification is the same as we observe when
estimating the standard model using actual data. Hence, the adjustment we make to the
income process is sufficient to explain the differences in parameter estimates obtained
when estimating the standard model across moments and weighting matrices.

We next estimate our proposed model using Norwegian administrative data and Panel
Study of Income Dynamics (PSID) data. We find similar parameter estimates regardless of

the moment or weighting matrix applied. This stability of parameter estimates suggests
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that our proposed model does not have the misspecification problems of the standard
model. Moreover, because our proposed model only requires estimating one extra pa-
rameter relative to the standard model, it can be estimated even in small samples such
as the PSID. Hence, we argue that the benefit of reducing model misspecification out-
weighs the cost of increased model complexity. We also provide codes online to make the
estimation of our proposed model available to other researchers.!

Although the standard income model is misspecified and we recommend using our
proposed model, our results can be used to interpret the existing literature. Some com-
binations of moments and weighting matrices yield more reliable estimates than others.
Both in simulated and actual data, the combination of level moments and the equally
or diagonally” weighted minimum distance method provides parameter estimates in the
standard model close to the data-generating process or the parameter estimates of the
proposed model. The intuitive reason is that with level moments, the permanent variance
will be identified from moments for which the transitory shocks play no role (cov(y;, y;)
with s >> t). Hence, the standard model will accurately identify the permanent income
variance if these long covariances are weighted sufficiently high in the estimation and the
transitory shocks are sufficiently small or short-lived.

We also use our proposed model to investigate how income risk varies by age and
how the nature of income risk has changed over time in Norwegian administrative data
and the Panel Study of Income Dynamics (PSID). First, regarding lifecycle income risk,
we find that neither permanent nor transitory income variance varies much from age 35
to 50. This result is consistent with prior findings in the literature where income risk
does not vary much by age (see, e.g., Storesletten, Telmer, and Yaron, 2004, Heathcote,
Storesletten, and Violante, 2005, and Guvenen, Karahan, Ozkan, and Song, 2021). Second,
we find evidence that ‘start-of-working-life’ inequality and permanent income risk have
increased over time in both the Norwegian data and the PSID.> We further show that
the estimated time trends of income risk are similar irrespective of whether one uses the
standard or our proposed model. Hence, while the standard model tends to yield very

different estimates of the level of risk depending on the moment or weighting matrix

1https ://github.com/edmundcrawley/IncomeEstimationToolbox.

2In both simulated and actual data, the diagonally weighted minimum distance matrix performs well,
but one cannot guarantee its performance in all cases because it might give sufficiently low weights to the
covariances with large time differences.

3This question has been discussed extensively at least since Gottschalk, Moffitt, Katz, and Dickens
(1994). Recent contributions include Moffitt and Gottschalk (2002), Gottschalk and Moffitt (2009), Heathcote,
Storesletten, and Violante (2010), Heathcote, Perri, and Violante (2010), Sabelhaus and Song (2010), Moffitt
and Gottschalk (2012), Bloom, Guvenen, Pistaferri, Sabelhaus, Salgado, and Song (2017), Moffitt, Bollinger,
Hokayem, Wiemers, Abowd, Carr, McKinney, Zhang, and Ziliak (2021), Carr, Moffitt, and Wiemers (2020),
Moffitt and Zhang (2020), and McKinney and Abowd (2020).
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applied, the time trends in income risk are similar.

Related literature. Our paper most closely relates to Daly, Hryshko, and Manovskii
(2022), who also ask why estimates of permanent and transitory shocks in the standard
model depend on the estimation method used. However, their solution is different.
They argue that differences in the sample selection that naturally arise between level
and difference estimation in unbalanced panels can explain the differences in estimates.
They show that using a balanced panel overcomes these sample selection issues and, as a
result, conclude that the standard model can fit the data well. In contrast, we show, both in
theory and practice, that the results of Daly, Hryshko, and Manovskii (2022) are sensitive
to the weighting matrix used in the estimation. This sensitivity to the weighting matrix
is distinct but similarly concerning evidence that the standard model is misspecified. We
show that our proposed model is robust to the choice of moments used and the choice
of weighting matrix. Nevertheless, we remain convinced by the arguments about sample
selection and restrict ourselves to using balanced panels in our analysis.

Several papers are building rich models to match higher-order moments of the income
distribution. For example, Guvenen, McKay, and Ryan (2022) build an income process
that is rich enough to fit several moments of the income distribution but is still suffi-
ciently tractable to be included in structural models. Similarly, several papers build more
complicated models matching higher-order moments of the income distribution.* We see
our paper as complementary to this literature—while this literature focuses on matching
higher-order moments, our paper is targeted at correctly determining the persistence of
shocks and their variance and makes no claims about higher-order moments. Instead
of building complicated models to match the dynamics of the income innovations, we
construct a parsimonious income process that is robust to known misspecification issues.
Hence, it fits the data well, yet is simple enough to be included in structural models and

allows estimation in relatively small data sets.

4Other recent examples include Druedahl, Graber, and Jorgensen (2021), whose model matches data
on monthly income innovations in Denmark; Guvenen, Karahan, Ozkan, and Song (2021), which build an
income process to match moments from administrative data on annual income innovations in the U.S.; and
Arellano, Blundell, and Bonhomme (2017), who estimate a process that allows for variation in parameters
by individual income levels to match income innovations. Several other papers also estimate variants of
non-linear income dynamics, e.g., Browning, Ejrnaes, and Alvarez (2010), Altonji, Smith Jr., and Vidangos
(2013), De Nardi, Fella, and Paz-Pardo (2020), Braxton, Herkenhoff, Rothbaum, and Schmidt (2021), and
De Nardi, Fella, Knoef, Paz-Pardo, and Van Ooijen (2021). For Norway, Halvorsen, Holter, Ozkan, and
Storesletten (2024) present evidence of non-gaussian features of income dynamics.



2 Data

The analysis uses Norwegian administrative data on annual income. We combine this
income data with demographic information such as sex, age, country of birth, and years
of education. To ensure comparability with the rest of the literature, we restrict attention
to males born in Norway with income between 1971 and 2014.

The Norwegian income data have several advantages relative to other available data
sets. First, the data are administrative, covering the population of Norwegian tax resi-
dents. Second, only a small share of the earnings are right-censored.” Therefore, our data
include precisely measured earnings for almost everyone. Third, the long panel from
1971 to 2014 allows us to follow individuals for long periods, including some cohorts’

complete earnings history from their first job to retirement.

Variable definitions. Our pre-tax earnings measure includes labor income (from wages
and self-employment) and work-related cash transfers such as unemployment and short-
term sickness benefits. In the analysis, pre-tax earnings are deflated with the consumer
price index, indexed to 2011 Norwegian kroner. The observations we use for individual
log income are residuals obtained from a regression of log earnings on a full set of dummies

for year, age, and years of education.

Sample selection. We select our sample from this data according to the suggestions in
Daly, Hryshko, and Manovskii (2022). They argue for the importance of using a balanced
sample since gaps in the data can bias the estimation of income processes. We focus on
individuals in the middle of their careers, restricting attention to ages 35 to 50.° When
doing so, we include individuals whose earnings observations are available for all the
years from 34 to 51 to ensure a balanced sample.” In addition, we remove observations of
extreme income changes and observations where the income level is very low. We define

extreme income changes as observations where income increases by more than 500 percent or

>Bhuller, Mogstad, and Salvanes (2017) document that less than 3 percent of the sample is right-censored
in any given year. The income series is available from 1967, but Halvorsen, Ozkan, and Salgado (2022) show
that top-coding was most prevalent from 1967 to 1970 and that from 1971 less than 1% of observations are
right-censored each year.

%We start at age 35 because the variance of income by age decreases with age before age 35 in the
Norwegian data, driven by the variance of high-skilled individuals (Blundell, Graber, and Mogstad, 2015).
Neither the standard nor our proposed model can account for such a pattern. Appendix A.1 provides more
detail on our sample selection.

"Following Daly, Hryshko, and Manovskii (2022), the first (34) and last (51) observations ensure that we
include individuals who worked the entire first (35) and final (50) observations in our sample.



decreases by more than 80 percent, same as Daly, Hryshko, and Manovskii (2022).5 A very
low income level is defined as below the Norwegian social security system’s definition
of a base level (around USD 10,000 in 2011). Observations where an individual has a
lower income level than this base level are considered years where the individual is only
loosely attached to the labor force and is treated as a missing observation. If an individual
ever experiences an extreme income change or a very low income level, all individual
observations are dropped from the sample, ensuring that the panel is balanced. Our final
sample includes 536,399 Norwegian males from 27 cohorts born between 1937 and 1963.

3 Problems with the Standard Model

This section illustrates the misspecification issues with the standard model using the Nor-
wegian data. We first describe the model and how to identify the model parameters. Next,
we present estimation results for all combinations of moments and weighting matrices

typically applied.

3.1 The Standard Model

We will use the “standard model” as a benchmark to highlight some of the existing
problems in the literature and how our proposed model resolves these problems.’

The standard model is typically written at an annual frequency with log income y;
composed of a permanent component p; with innovations ¢; and transitory shocks ¢; with

a moving-average coefficient 0. The model can be written as

Ye=pe+ &+ 0 (1)
Pr = pr—1 + Yy 2)

where ¢; and ¢, are independent of each other and across time.
The permanent income component is a random walk at an annual frequency, and the
transitory income component follows an MA(1). The process begins at time zero with

some existing distribution of permanent income. The parameters of interest in this model

2

are the variance of permanent and transitory income innovations, o v

2 .
_and o, respectively,

8In a robustness exercise, in Appendix E.3, we do not exclude these individuals with extreme income
changes. There is no substantial effect on our results.

9While there are several variants of the standard model—most commonly including some decay in
the permanent component—they all suffer from the same problems that our proposed model can resolve.
Appendix E.2 estimates both the standard and proposed model allowing for general persistence and finding
the same structure of misspecification issues.



as well as the ‘start-of-working-life’ variance of permanent income o3, and the MA(1)
parameter 0.

Researchers can use either level or difference moments to identify the parameters in
the model. If they use difference moments, the covariance structure of permanent income
is

var(Apy) = Gfpt 3)
cov(Ap;, Aps) =0 ifs # . 4)

and the covariance structure of the transitory component is (defining the transitory com-
ponent as q; = &; + O¢g;_)

var(Agy) = o2, + (1 - 0)’0;_ + 6%07, (5)
cov(Agy, Aqi1) = —(1 - 0)a>_ + O(1 - )7 (6)
cov(Aqy, Agi—p) = —6’0@2 (7)

cov(Aqy, Ags) =0 ifs<t—2. (8)

Using the independence of the permanent and transitory components of income, the
covariance structure of the difference in log income is the sum of the covariance structure
of each component

cov(Ay;, Ays) = cov(Apy, Aps) + cov(Age, Ags). 9)

It is common to use equations (3)-(9) to estimate parameters by minimizing the dis-
tance between the empirically observed moments and those implied by the model. The

approach is similar when using level moments, deferred to Appendix B.1.

3.2 Results Using the Standard Model

We now estimate the standard model using Norwegian data. We first describe our esti-

mation procedure before we present the estimated parameters.

Estimation procedure. We start with M balanced panels, each starting in a different
year. For each panel, we calculate the empirical covariance matrix for either the levels or



differences

N
1
EmpiricalLevels, , = N Z Yitlis (10)
i=1
1 &
EmpiricalFD, , = N Z Ay Ay (11)
i=1

where y;; is residualized log income of individual i at time t as described in Section 2. Our

minimum distance procedure for differences uses the loss function:

M
L= Z vech(EmpiricalFD; — ModelFD ;)" Q7 'vech(EmpiricalFD; — ModelFD)) ~ (12)
j=1

and equivalently for levels. Here Q; is either the full optimal minimum distance weight-
ing matrix for panel j (optimal), the optimal minimum distance weighting matrix along
the diagonal with all off-diagonal elements set to zero (diagonal), or the identity matrix
(identity).

Results. Table 1 presents estimated parameters using all combinations of moments and
weighting matrix typically applied in the literature. There are several notable observa-
tions.

First, the estimated variance of permanent shocks differs depending on whether one
estimates the model using level or difference moments. For example, looking at the
diagonal column, the estimated variance of permanent income is 0.004 when estimated
using level moments but almost three times as large when using difference moments. Since
permanent income risk is of primary importance for household welfare, these differences
substantially affect household behavior in structural models. Hence, it is important to
understand the origins of this result and how to estimate permanent and transitory income
variances consistently.

Second, while the estimated permanent variance is higher when using difference rather
than level moments, the estimated transitory variance is lower. For example, when using
the diagonal weighting matrix (diagonal), the estimation using level moments yields a
lower estimate of permanent risk but a higher estimate of the variance of transitory
risk than the estimation using difference moments. Contrary movements in parameter
estimates suggest that part of the variation in the data is not correctly allocated to the
transitory or permanent variance when using the standard model.

The third observation is that when using the full optimal minimum distance weighting



Identity Diagonal Optimal
Level Difference | Level Difference | Level Difference

o> 0.004 0.011 0.004 0.011 0.005 0.007
0.032 0.020 0.033 0.020 0.021 0.021
0 0.570 0.070 0.574 0.071 0.163 0.145
o2, 0.062 X 0.062 X 0.058 X

Notes: The table presents estimated parameters using the standard model on Norwegian data. Level and difference denote the type
of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied,
corresponding to identity, diagonal of the optimal, and full optimal weighting matrix, respectively. The parameter 0 is the moving-
average coefficient. The table shows the mean of parameter estimates over time and age.

Table 1: Estimated parameters using the standard model, Norwegian data.

matrix (optimal), one gets more similar parameter estimates regardless of which moments
are used. Daly, Hryshko, and Manovskii (2022) note this and argue that this estima-
tion method, combined with a balancing of the panels, yields unbiased estimates of the
permanent and transitory variance using both level and difference moments. However,
although parameter estimates are similar irrespective of the moments used, it does not
imply that the resulting parameter estimates are correct, a point we return to in Section 5.

We have now established the main misspecification issues of the standard model. The
rest of the paper is devoted to providing an alternative yet simple model that does not
feature these misspecification issues.

4 The Proposed Model

We now present the proposed model, focusing on how it differs from the standard model.
Our innovation is that we allow for three types of income shocks. This section shows
that this change is sufficient to resolve the misspecification issues in the standard model
discussed in Section 3. Moreover, since we only add one additional parameter, our
proposed model is parsimonious and can be estimated in small data sets such as the PSID.

4.1 The Shocks

The innovation is to include three types of income shocks in our model. Permanent
shocks are the exact analog of those in the standard model. Bonus shocks are the analog
of transitory shocks in the standard model without an MA(1) component and can also
be considered to encompass classical measurement error. Finally, in place of the MA(1)

process for transitory shocks, we propose combining bonus shocks with “passing” income



shocks persisting over a stochastic period. The model for log income, y; is written as
follows:

Yi=pr+ o+ G (13)

¢
Pr=pe1+ P =po + Z V; (14)
i=1

v;—1 with probability p,.ssin
b = |V P Y Ppassing (15)

¢/ with probability 1 — ppassing

where p; is the permanent component, v, is the passing component, and (; is the bonus
component. As is common for the standard model, our proposed model is written at an
annual frequency.10 The shocks to each component, vy, (;, and ¢} are each ii.d. across
time and from each other and have potentially time-varying variance.!" The rest of this
subsection describes each income component type in detail, how parameters are identified
in the data using both level and difference moments, and provides intuition about how

the standard model may misinterpret these shocks.

Income component 1: Permanent. A permanent shock to income can be thought of as
a promotion, a wage rise, or a job change that sets an individual on a permanently higher

income trajectory.'? In levels, the covariance matrix for the permanent shock is, for t < s:
) Y- p

t K t t
cov (py, ps) = cov [po + Z Vi, po + Z tpi) = var [po + Z gbi] = Gfm + Z aii (16)
i=1 i=1 i=1

i=1

2
4

can always calculate the difference covariance matrix from the levels covariance by the

where ¢, is the permanent shock variance at time i. For any component of income, x, we
1

19Since the model is written in discrete time, it suffers from some of the problems of time aggregation
highlighted in Crawley (2020). In a previous version of this paper Crawley, Holm, and Tretvoll (2022), we
investigated the importance of time aggregation by modeling the income process in continuous time. Our
results indicate that this matters for accurately estimating the relative importance of the different transitory
shocks in the model, but it is not crucial for estimating permanent versus transitory risk. For economic
applications, this latter distinction is the key issue, and hence, we focus on the discrete-time formulation of
our proposed model in this version of the paper.

Note that our estimation procedure only uses the covariance structure of the income process; therefore,
our model allows for arbitrary higher-order moments. In particular, there is no restriction that the shocks
in the model are Gaussian.

12In the body of the paper, we focus on versions of the model where the permanent component of income
is a unit root. In Appendix E.2, we estimate models in which the permanent component is allowed to
mean-revert and can be highly persistent but possibly not permanent.

10
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Figure 1: Covariance structure for the permanent component of income.
relationship:

cov (Axy, Axs) = cov (xy, X5) — cov (X;-1, Xs) — €OV (X¢, Xs—1) + €OV (X;-1, Xs-1) - (17)

In the case of the permanent income component, this reduces to:

o> ift=s
cov (Apy, Aps) =4 ¥ (18)
0 otherwise.

Figure 1 graphically shows the covariance structure of the permanent component of

income in differences (panel a) and levels (panel b), assuming the variance of permanent

shocks does not vary over time. The key features to notice are that the permanent

component difference moments are constant on the diagonal and zero off the diagonal.
By contrast, the permanent component level moments grow at a constant rate along the
diagonal—a feature that is unique to the permanent shock component, as we shall see.

Income component 2: Bonus. The bonus shock consists of a one-time shock to income,

like a bonus that increases the annual income that year but has no correlation with income

in other years. It can be either positive or negative. In levels, the covariance matrix for

11
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Figure 2: Covariance structure for the bonus component of income, differences and levels.

the bonus shock is:

aé ift=s
cov (G, C5) =4

(19)
0 otherwise.

As with the permanent shock, we can calculate the first difference covariance matrix
from the level covariance matrix, it is:

2 2 ey
o, +0; ift=s
—aé ift=s5-1
cov (ACy, AG) = ' ' (20)
—aé_l ift=s+1
0 otherwise.

Figure 2 shows the covariance structure for the bonus component of income assuming
non-time-varying shock variance. In differences (panel a), the diagonal is positive and the
off-diagonal elements are negative and half the size of the diagonal elements. Note that
the sum of each row or column of the matrix is zero—a feature of all transitory shocks. In

levels (panel b), the bonus component covariance matrix is constant along the diagonal
and zero elsewhere.

12



Income component 3: Passing. The final income shock we introduce is a passing shock.
In this stochastic process, income jumps at a fixed hazard rate. When this component
of income jumps, it moves to a new level drawn from an independent distribution with
a mean of zero. As a result, the level of this shock remains fixed for an exponentially
distributed period of time before jumping to a new level.

One can think of the passing shock as representing a longer unemployment spell
or a temporary switch to part-time employment. Alternatively, the passing covariance
structure is consistent with pay rises that are predictable over the long term, but whose
exact timing is subject to randomness.?

Another income process that results in an identical covariance structure to the passing
shock process described here is an AR(1) process.'* However, we describe the model as
having passing shocks for two reasons. First, Druedahl, Graber, and Jergensen (2021)
estimate a monthly model where they specify a shock type that is general enough to
potentially contain both the passing variant and the AR(1) variant. They reject the AR(1)
version and end up with an income process similar to the passing shock in the current
paper. Second, Arellano, Blundell, and Bonhomme (2017) show that individuals with
very low income realizations tend to experience sudden and large increases in income.
These sudden large increases are more consistent with the end of passing-type shocks
when income jumps back toward the mean, rather than slowly drifting toward the mean.

The covariance structure of the passing component of income in levels for s > t is:

t

2
cov (vf s Us ) p paSSmg Ut p passmg (Z (1 p passmg) p passmg g“ tp passmgae (21)

i=1

where 012” = th':1 (1 - ppassing) p;ais Smgo o+ ppassmgqS is the variance of the passing shock
component of income at time t. This variance is equal to the weighted mean of the
variance of the passing shock at each time in the past, where the weights are given by the

probability that the passing component of income has not changed since that time. Note
log(2)

log(ppassing) ’

In our estimation results, we will show the half-life estimate as it is easier to interpret. In

that this specification of the passing shock implies that it has a half-life of 7 = -

13 Appendix C.2 contains a model of such an income process with the same covariance matrix as the
passing shock process described here.
4 Appendix C.3 proves this claim.
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Figure 3: Covariance structure for the passing component of income, differences and
levels.

differences, the passing component covariance matrix is given by:

2 + (1 = 2Ppassing) 02, ift =s

cov (Avy, Avs) = R |
- (1 - ppassing) p;assmg( ppassmgavt 1) if s > t.

(22)

Figure 3 shows the covariance structure of a passing component on income in which
the variance of the passing shock is constant over time. The difference covariance matrix
(panel a) shows a tall column along the diagonal. In contrast to the bonus shock, which
had off-diagonal elements that were half as tall as those on the diagonal, the off-diagonal
elements for the passing shock are only a little negative. It is still the case that the (infinite)
sum of each row is equal to zero, a necessary feature of the difference moments of a
transitory income process. The levels covariance matrix (panel b) is constant along the
diagonal and falls away exponentially away from the diagonal.

Figure 3 also reveals how to identify ppagsing from the covariances. For both level and
difference covariances, the ratio between two off-diagonal covariances along a row of
the variance-covariance matrix can identify the passing shock persistence. For the level
covariances, it is straightforward to compute that cov(vy, vs11)/cov(v, Vs) = Ppassing- For the
difference moments, it is more cumbersome and this is relegated to Appendix C.1.

14



Adding up. Using the independence of the permanent and transitory components of
income, the covariance structure of log income is the sum of the covariance structure of

each component:

cov (Yt, Ys) = cov (pt, ps) + cov (vy, vs) + cov (Cy, Cs) - (23)

For estimation, we will make use of all the available covariance elements and as a
result our parameters are over-identified. In Appendix C.1 we write down an example of
how to derive each parameter from an exactly-identified equation which also serves the

purpose of showing that all the parameters are identified in our model.

Intuition for the problems with the standard model. To gain intuition for why the
standard model can fail, assume that the proposed model is the data generating process
with constant shock variances. Furthermore, assume that we have an infinite sample such
that our empirical covariance matrix exactly matches that of the proposed model. We
now consider what happens when we estimate the standard model parameters on this
covariance matrix.

First, consider the case of estimating the standard model using the difference covari-
ance matrix. The standard model assumes that all elements of the difference covariance
matrix beyond order 2 is zero. The three parameters of the standard model (aé, 02, and 0)
are set such that the first three covariances (var(Ay;), cov(Ay;, Ay;—1), and cov(Ay;, Ay;—2))
are exactly matched. The model cannot do better than this because none of the parameters
affect covariances beyond order 2.

For any transitory shock, the contribution to the diagonal elements is equal to minus the
sum of the other elements in each row. Considering only the two first covariances implies
that the model will underestimate the presence of transitory shocks. Instead, the standard
model will interpret a large share of the passing shocks as permanent shocks. Hence, if
our proposed model is the data generating process, the standard model estimated using
difference moments will underestimate the variance of transitory shocks and overestimate
the variance of permanent shocks.

The size of the underestimation of the transitory shock is equal to the sum of all co-
variances beyond order 2. In practice, as can be seen in Figure 3, each of these covariances
are small and likely to be statistically insignificant outside of administrative datasets (see,
e.g., Abowd and Card, 1989). However, the sum is the relevant statistic to understand the
extent of the bias, and this sum may be large. This observation motivates our test in the
PSID data that the sum of higher-order covariances is statistically significant.

Second, consider the case of estimating the standard model using the level covariance
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matrix. A distinguishing feature of the permanent income component’s covariance ma-
trix is that it grows along the diagonal, while the two transitory income components are
constant along the diagonal. This unique feature of the permanent component’s covari-
ance matrix results in the permanent shock variance being correctly estimated even when
estimating the standard model. The total size of the transitory shock variance (the sum
of the bonus and the passing component) is also correctly estimated with a long panel
because both transitory components share the feature that their levels covariance matrix

falls to zero as you move further from the diagonal.

4.2 Mapping Between the Standard and the Proposed Model

Our proposed model has five parameters. Three of these parameters have almost ex-
act counterparts in the standard model: initial permanent income variance, permanent
income variance, and transitory income variance.”> The two remaining parameters, the

half-life of the passing shock 7 and the fraction of the transitory variance that is of the

2
passing

=02 4o

1" 77 3 — 2 2 2
bonus” variety (b = o, /o7 ~where o s

bonus! ~ tran tran

), roughly serve the same
purpose as the MA(1) parameter in the standard model in determining how persistent
transitory shocks are, although they are not numerically comparable. Table 2 shows how
the parameters in the two models compare.

Parameter Description Proposed  Standard
Permanent income variance ofyerm Var(y)
Transitory income variance oz (1 + 6%)Var(¢)
Half-life of “passing’ shock T X
‘Bonus’ fraction of 02 b X
MA(1) coefficient X 0
Initial permanent income variance 02 Var(po)

Table 2: Parameters in the proposed and standard models.

The transitory income variance is defined as the total variance induced by transitory income processes.
That is, in the standard model, transitory income variance at time T is (1 + 6?)Var(er), not Var(er) which
does not have a clear counterpart in the proposed model.
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5 Simulation Results

This section presents a simulation exercise to illustrate how our proposed model can
reconcile the misspecification problems in the standard model discussed in Section 3. The
main result is that, in data simulated from our proposed income process, the standard
model has the same type of misspecification issues as in actual data. Hence, the simulation
exercise indicates that the standard model’s problems can be explained by an insufficient

description of transitory income shocks.

Simulation details. We simulate data according to the proposed model in equations
(13), (14), and (15). Owur simulation contains a panel of 200,000 individual log income
histories over 16 years. We choose parameters to match those that we estimate using
Norwegian data in Section 6.1. We then calculate the covariance moments of both income
levels and differences, that is cov(y, ys) and cov(Ay;, Ay;) for all t and s between 0 and 15.
For each set of moments, we estimate the standard model using three different weighting
matrices: equally weighted minimum distance (identity), diagonally weighted minimum

distance (diagonal), and optimally weighted minimum distance (optimal).

Simulation results. Table 3 presents parameter estimates using either the standard
model (Panel A) or the proposed model (Panel B). The column “True Value” shows the
parameters of the data-generating process.

The columns using identity and diagonal in panel A of Table 3 show the main misspeci-
fication problem: relative to estimation using level moments, estimation using difference
moments tends to overestimate permanent income variance and underestimate transitory
income variance. This pattern of misspecification is the same as we found when estimat-
ing the standard model in Norwegian data in Table 1. Indeed, panel A of Table 1 and
Table 3 are challenging to tell apart. Hence, the simulation exercise indicates that the
standard model’s problems can be explained by an insufficient description of transitory
income shocks.

Moreover, reflecting the results in Daly, Hryshko, and Manovskii (2022), there is no
difference between the parameter estimates obtained using level and difference moments
when one uses the optimal weighting matrix (optimal). However, estimation using opti-
mal—albeit similar across moments used—does not obtain the true parameters. Hence,
not being sensitive to the moments used is insufficient to claim that the model is no longer

misspecified.'®

1eTn Appendix D.1 we further investigate the results presented in Daly, Hryshko, and Manovskii (2022).
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Parameter

True Value

Identity

Level Difference

Diagonal

Level Difference

Optimal

Level Difference

Panel A: Standard Model

Operm 0.005 0.005 0.012 0.005 0.012 0.008 0.008
0% 0.038 0.033 0.020 0.033 0.020 0.024 0.023
T 2.0 years X X X X X X
b 0.40 X X X X X X
0 X 0.39 0.07 0.40 0.07 0.14 0.13
02 0.065 0.068 X 0.068 X 0.068 X
Panel B: Proposed Model
Operm 0.005 0.005 0.005 0.005 0.005 0.005 0.005
0% 0.038 0.038 0.039 0.038 0.039 0.038 0.038
T 2.0 years 2.0 2.1 2.0 2.1 2.0 2.1
b 0.40 0.40 0.40 0.40 0.40 0.40 0.40
0 X X X X X X X
02 0.065 0.065 X 0.065 X 0.065 X

Notes: Panel A presents estimated parameters using the standard model on data generated for 200,000 individuals from the proposed
model. ‘True Value’ refers to the parameters used in the data-generating process. Level and Difference denote the type of moments
used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied, corresponding
to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters T and b are the half-life of the passing
shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter 0 is the moving-average coefficient.
Panel B presents the estimated parameters using the proposed model on the same simulated data.

Table 3: Estimated parameters using simulated data.

Proposition 1 sheds some light on why the optimal weighting matrix may yield similar
results independent of the moments used.

Proposition 1. For any data-generating process with an ergodic difference distribution, as T — oo
and N — oo the optimal weighted minimum distance estimator will yield the same estimate
irrespective of the type of moments — levels or differences — used.

The intuition for Proposition 1 is as follows. The optimal estimation procedure is

invariant to any invertible linear mapping of the moments used for estimation. Hence, if

We follow the sample selection criteria they used for their Danish data as closely as possible to obtain a
similar selection from the Norwegian registry data. Then we replicate the estimations they present using
both level and difference moments with optimal and show the same result: with a balanced panel, there is
no difference between estimates from the two sets of moments. However, we also present estimates using
identity and diagonal, and for those weighting matrices, the parameter estimates again depend on the choice
of moments. Our simulation exercise indicates that we cannot have confidence in the estimates obtained
with the standard model using optimal, even though they do not depend on the choice of moments.
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level moments were an invertible linear mapping of difference moments, the parameter
estimates from the optimal estimation procedure would be identical irrespective of the
moments used. Importantly, level moments are not an invertible linear mapping of
difference moments because the difference moments have a lower dimension (there is one
less covariance term) than the level moments. However, one can construct an invertible
linear mapping between the level and difference moments by adding an additional row of
level moments (either time 0 or time T) to the difference moments. The level and difference
moments are thus ‘almost” invertible. As T converges to infinity, the relative importance
of these additional terms in the covariance matrix converges to zero, and the estimated
parameters become similar. Appendix D.2 provides a sketch proof of this proposition.'”
Proposition 1 requires the data-generating process to be ergodic to make sure that the
importance of the terms added to the difference covariance matrix to make it invertible
converges to zero. For the standard and proposed models in this paper, this holds.
However, in some other common applications, this is not true. For example, if the income
process contains ‘types’ where fixed effects are correlated with the variances of permanent
shocks or if the income process contains heterogeneous trends (Guvenen, 2009).
Proposition 1 requires T — oo. Importantly, with small T, as is common in practical
applications, the optimal estimation procedure will yield different parameter estimates
depending on the type of moments used. In practice, we therefore need to know how large
T would have to be for the parameter estimates to converge. Figure A.2 in Appendix D.3
illustrates how the parameter estimates of permanent and transitory variance converge as
we increase T when the standard model is estimated on simulated data from the proposed
model (as in Table 3). As suggested, the parameter estimates are relatively different for
small T but converge as we increase T. For T equal to 16, as in the simulation exercise
above, the parameter estimates are already reasonably close (less than 10% different).
Another notable observation from Table 3 is that some combinations of weighting
matrix and moments yield parameter estimates close to the data-generating process even
though the standard model is misspecified. For example, using the combination of level
moments and either identity or diagonal weighting matrix provide estimates that are close
to the true permanent and transitory variances.'® Proposition 2 shows that as long as the

data-generating process has a random walk component and the transitory income shocks

7Proposition 1 assumes the existence of a data-generating process that yields a set of balanced panels,
that is, each individual 7 has an income panel of length T. The importance of balanced panels in estimation
is shown by Daly, Hryshko, and Manovskii (2022).

BHowever, we note that the persistence of transitory shocks is too low. The parameters for the persis-
tence of the transitory shock—0 in the standard model, b and 7 in our proposed model—are not directly
comparable. However, the 0 estimated in the table suggests the transitory shocks are less persistent than in
the data-generating process.
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are sufficiently transitory, the standard model will consistently estimate the permanent
income variance, and therefore also the total transitory income variance when estimating

using level moments and the identity weighting matrix.

Proposition 2. Take any data-generating process in which income is made up of a random walk
(permanent) component and a potentially persistent but transitory component — our proposed
model is an example. The equal-weighted minimum distance estimator of the standard model
with level moments consistently estimates the permanent income variance of this data-generating
process as the panel length of the data tends to infinity.

The intuition for Proposition 2 is as follows. When s >> t, cou(y;, ys) only contains
information about the variance of permanent income — the covariance of the transitory
component tends to zero by definition. Therefore, as the panel length gets large, there will
be enough of these ‘long’ covariances to estimate the permanent income variance. When
the permanent income variance is estimated consistently, the model identifies transitory
income variance residually. This intuition is fleshed out in Appendix D.4.

Proposition 2 requires a panel length that tends to infinity. In practice, the panel length
of the data has to be sufficiently long relative to the persistence and size of the transitory
shock. The parameter estimates will be biased if the panel dimension is too short relative
to the persistence and size of the passing shock. Indeed, when estimating the standard
model, the transitory shock is assumed to be an MA(1) such that level covariances beyond
order 1 are used to identify the variance of the permanent shock only. However, the
passing shock in our proposed income process affects covariances beyond order 1. These
covariances stemming from the passing shocks will bias the estimates of permanent
income risk, and this bias increases with the persistence and variance of innovations in
the passing shock process. Hence, the more persistent or risky the passing shocks are,
the longer the panel dimension of the data must be to provide a consistent estimate of
permanent variance, and it might need to be longer than the work-life of employees.

In Appendix D.5, we illustrate the role of passing shock size and persistence for the
bias of estimated permanent variance. The biases are small for the half-life values and
variance of passing shock innovations we estimate in the paper (used in the simulation).
Still, if the passing shocks have a higher variance or the passing shocks have a longer
half-life, the bias can become large, especially when the length of the panel is shorter.

Proposition 2 also sheds light on another case when estimating the standard model
using level moments may be problematic. If the permanent shocks decay slowly over
time — a common version of the standard model — the level estimation using the identity
weighting matrix will no longer provide unbiased estimates. Indeed, if the permanent

component of the income process is not a unit root, the permanent income variance can no
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longer be identified from the ‘long” covariances. In this case, it is particularly important
to estimate our proposed model rather than relying on estimates from the standard model
using level moments.

In Appendix D.6, we show the results of estimating the standard model on a shorter
panel of simulated data and on a simulated panel where the ‘permanent’ shocks decay
slowly. These changes have little effect on the difference estimates (which are already
biased) but can also introduce bias in the level estimates. In particular, the table suggests
that when the permanent income shocks slowly decay, the permanent income variance is
underestimated when using level moments.

Overall, our recommendation is to estimate our proposed model to avoid any of the is-
sues discussed above related to estimation of the standard model. However, Proposition 2
does form the basis of our secondary recommendation that if you are estimating the stan-
dard model, then it should be estimated using level moments and an equally-weighted
minimum distance estimator."”

Panel B of Table 3 shows the parameter estimates for the proposed model using the
same set of simulated data. This set of results has no conflict between the level and
difference estimates or the weighting method applied.

6 Data Results

We now proceed to estimate our proposed model using data. We first show that the
parameter estimates for our proposed model are relatively insensitive to the moments
and weighting matrix applied.”” Hence, enriching the description of transitory income
shocks is sufficient to significantly reduce the extent of misspecification. To illustrate that
our proposed model is still parsimonious, we first estimate how income risk varies by age
and time using Norwegian data. We also estimate our proposed model using the PSID
data from the U.S.

6.1 Results using Norwegian Data

Estimation details. The Norwegian data contains 27 balanced panels, one for each cohort

of our data. We allow for the permanent and transitory shock variance to vary year-to-year

YWe can also note that, in practice, we have found that the diagonally-weighted minimum distance
estimator tends to work well for the standard model when combined with level moments.

2The estimation of all models in the body of the paper assumes that the permanent component of income
is a unit root. In Appendix E.2, we show that all our main results also prevail if we relax the assumption of
a unit root.
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and also linearly with age. Specifically, we assume that variances in year ¢ for individual i
born in cohort ¢ are defined as Git = (ap + a1 (t — ¢)) - 02. That is, for a 40 year old in 1982,
we assume they experience shocks equal to an average for individuals in 1982 multiplied
by a factor specific to 40 years that does not change over time.

The loss function is the sum of 27 sub-loss-functions, one for each cohort c. To reduce
oscillatory behavior in the permanent volatility estimate, we add a regularization penalty
to the loss function that penalizes changes in the permanent shock variance from year to
year.?! In addition, we adjust the model to allow for an institutional feature in Norway
where a share (approx. 10 percent but time-varying) of labor income is paid in the
following year as vacation pay. We adjust the model-implied moments to be associated
with (1 —n;)y: + 1n:y:—1 where 1), is the vacation pay share and compare these with the data.
In practice, this adjustment has only minor effects on our results.

Income risk. Panel A of Table 4 shows the parameter estimates using the proposed
model with each of the six combinations of weighting and covariance matrices. To ease
comparison, Panel C of Table 4 also includes the estimates using the standard model (same
as Table 1). Our proposed model’s estimated parameters are relatively similar across all six
combinations of data moments and weighting matrices. The permanent income variance
is between 0.003 and 0.005, while the transitory income variance varies between 0.035 and
0.042. In contrast, the parameter estimates vary widely depending on the moment and
method applied when using the standard model (Panel C).

Similar to Daly, Hryshko, and Manovskii (2022), we also find that the parameter
estimates of transitory and permanent variance become more similar if one estimates the
standard model using the optimally weighted minimum distance method. However, as
shown using simulated data, this does not imply that the estimated variances are correct.
Indeed, the estimated permanent variance using the standard model in the simulated
data was upward biased. In Table 4, we find the same pattern. The permanent income
variance is higher when estimated using the standard model and the optimal weighting
matrix compared with estimation using the proposed model.

In two of the six combinations of moments and weighting matrix in Table 4, the
standard model provides similar permanent income variance estimates as the proposed
model. The proposed model’s permanent income variance is between 0.003 and 0.005. The
standard model estimated using the equally or diagonally weighted minimum distance

method with level moments provides parameter estimates of permanent income variance

2
2The regularization term, R = R Y.} (o(zbt - (oé Lt oét )/ 2) , penalizes deviations of oét from the mean
g — +

of the points before and after it. R is a constant.
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Identity Diagonal Optimal
Level Difference | Level Difference | Level Difference

Panel A: Proposed Model

02 | 0003 0005 [0.003 0005 [0.003  0.004
o2 10042 0035 |004 0038 |0039 0035
T 2200  1.865 | 2362 2046 | 2221  1.865
b 0288 0434 [0290 0395 | 0369 0394
o2 | 0.061 X 0.060 X 0.058 X

Panel B: Proposed Model (no bonus shock)

02 | 0003 0007 | 0.003  0.008 [0.005  0.006
o2 10039 0025 |0038 0025 |0026  0.024
T 1333 0431 | 1425 0431 | 0541  0.468
b . : . : . :
o2 | 0.063 X 0.062 X 0.059 X

Panel C: Standard Model

o*}%erm 0.004 0.011 0.004 0.011 0.005 0.007
0.032 0.020 0.033 0.020 0.021 0.021
0 0.570 0.070 0.574 0.071 0.163 0.145
o2, 0.062 X 0.062 X 0.058 X

Notes: The table presents estimated parameters using the proposed and standard models on Norwegian data. Level and difference
denote the type of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting
matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b
are the half-life of the passing shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter 6 is
the moving-average coefficient.The table shows the mean of parameter estimates over time and age.

Table 4: Estimated parameters using the Norwegian data.

within the bounds of the proposed model. These are the same combination of moments
and weighting matrices that provided estimates close to the data-generating process also
in the simulation exercises. Hence, while we caution about using the standard model, our
results indicate that if one does use it, one should estimate the standard model using level
moments and the equally or diagonally weighted minimum distance method. However,
we warn that the transitory income variance is always lower when estimated using the
standard model compared with the estimates using the proposed model.

We estimate the half-life of the passing shock to be about two years. What kind of labor
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market events might this passing shock represent? We first note that while we specify the
model as a passing shock, we show in Appendix C.2 and C.3 that the covariance structure
of the passing shock is isomorphic to other types of shock processes, for example, an
asymmetric passing shock or an AR(1). Hence, the underlying economic mechanism
does not have to satisfy the passing shock specification exactly, only generate similar
covariances.

A half-life of two years is typically too long to represent an unemployment spell.
Instead, the passing shock we estimate most likely represents other events. Indeed,
Halvorsen, Holter, Ozkan, and Storesletten (2024) investigate the same data and find
that while changes in wages and increases in hours are persistent, “moderate and large
reductions in hours worked tend to be transitory and have mostly disappeared five years
after the initial fall.” Hence, our passing shock most likely represents “transitions in
and out of long-term sickness, transitions between full-time and part-time work, and job
changes.”

Another type of labor market event that our passing shock potentially represent is
suggested by Low, Meghir, and Pistaferri (2010). They estimate a stochastic process for
income that consists of a permanent shock, a fully transitory shock, and a firm-worker
match fixed effect. The match between a firm and a worker persists for a while, but may
be broken by firm-level shocks leading to job destruction or by workers moving after
receiving a better offer of employment. In our model, the passing shock could thus be
interpreted as connected with such a firm-worker match-specific effect.

Income risk by age and time. To investigate whether our proposed model yields dif-
ferent trends in income risk from the standard model, we provide age-varying and time-
varying estimates of income risk using both models. Figure 4 presents age profiles of
income risk estimated using the Norwegian data. We restrict attention in this exercise
to results using the diagonally weighted minimum distance method. Figure 4 thus dis-
plays the results for four different combinations of models (standard and proposed) and
moments (levels and differences).

The main takeaway from Figure 4 is that the misspecification of the standard model
might mislead researchers to spurious conclusions about age patterns. This observation is
illustrated in the top right panel showing the estimates of the transitory income variance.
First, the misspecification of the standard model is visible as the large discrepancy between
the estimates using the standard model. Moreover, the age profiles estimated using the
standard model differ depending on the moments used. With level moments, transitory

income risk decreases in age, while it is approximately flat if one estimates using difference
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moments. In contrast, our proposed model is less sensitive to the type of moments used in
the estimation. Indeed, irrespective of the moments used in the estimation, the proposed
model suggests a similar age pattern: transitory income variance declines slightly by age.

Figure 5 shows how estimates of income risk have changed over time in Norway. Panel
(a) shows a(zpt, permanent income variance ; Panel (b) shows ait + a";t, transitory income
variance, or the sum of passing shock variance and bonus shock variance; Panel (c)
shows o7 , the start-of-working-life variance. Again, the figure highlights how estimation
using the standard model may yield different estimated variances depending on the
type of moments used. However, the time trends of parameter estimates are relatively
similar across specifications. The permanent income variance has increased over time, the
transitory income variance has remained relatively stable, and the start-of-working-life
income variance has increased from around 0.05 to almost 0.08 from 1972 to 1998. Hence,
our results suggest that although the standard model is misspecified in that it may provide
biased estimates of the level of income risk, the time trends of income risk are relatively

similar across models.??

2Note that, in levels, a few years give rise to estimates of zero permanent income variance — a lower
bound in our estimation. Heathcote, Perri, and Violante (2010) point to the negative estimates using levels
as evidence of misspecification. Our proposed model is still likely to be misspecified. Nevertheless, this
misspecification seems worthwhile to accept considering the parsimony of the model.
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Figure 4: Age-varying estimates, Norwegian data.

) 0.0175 Proposed, levels 0.08 Proposed, levels 8 0.080 Proposed, levels //\\
O Proposed, fd v c —-==- Standard, levels I\
< 0.0150 . O 0.07 Proposed, fd © i\
o -—- Standard, levels 3 % —--- Standard, levels ‘T 0.075 B F| \§
R [ Standard, fd = © N -
© , H  0.06] ---- Standard, fd > I\ -y
So.0125 3 g 0 0.070 NAWN
s %00 A = 0.065 7
& 0.0100 Q /i &0 p
= 0.04 --3 ;v =7 (= ’
< [/ 68t 7
n ~ |5 \ SV *g 0.060 /
+ 0.0075 i ] 2 v g VB ¥ .
A N ) A I . v S0.0s5
c ) n '\ S \ ~—-
£ 0.0050 G A So02| e NS om0 SO
IS o ng W (P2 N e | mYYe T SO > 0. NN
& ’I\I \\‘l iy Y L C . W o' \,/
00025 N Y | 2 0.01 © 0.045
i v 74 g
== v (%]
0.0000 —2 .00 0.040
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1975 1980 1985 1990 1995
Year Year Start-of-working-life Year

(a) Permanent income variance

Figure 5: Time-varying variance estimates, Norwegian data.

(b) Transitory income variance
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6.2 Results using the Panel Study of Income Dynamics

Above, we illustrated that our proposed model provides stable parameter estimates of
income risk in the Norwegian administrative data. In this section, we show that our
proposed model performs well also when applied to the much smaller sample sizes in
the Panel Study of Income Dynamics (PSID). We first describe the data source and sample

selection before we estimate our proposed model using data from the PSID.

PSID. The PSID has been the main source of data to estimate the idiosyncratic income
process of households in the United States. In our analysis, we follow the data selection
criteria of Moffitt and Zhang (2018), “the dataset consists of male heads from 1970 to 2014,
30-59 years old who were not full-time students, had positive weeks worked and wage
and salary earnings, and which excludes non-sample men and all in PSID over-samples.”
Moreover, we only consider even year observations so that our estimation consistently
uses data every two years.”

The importance of estimating using a balanced panel is laid out in Daly, Hryshko,
and Manovskii (2022). Taking this lesson on board, we create 16 balanced panels from
our underlying data, covering different time periods. Each panel spans 14 years (8
observations, each 2 years apart). The first spans from 1970 to 1984, the next from 1972
to 1986, and the last panel from 2000 to 2014. The idea is that 14 years is long enough
to estimate the model, while the requirement that panels be balanced means there would
be too few observations in longer panels.?* Our panels in the PSID are far smaller than
those from the Norwegian registry data. As a result, we do not allow the parameters to
vary by age.”” Furthermore, since the data only contain even-year observations, we do

not identify 0 in the standard model.

Incomerisk. Table5 presents the estimated parameters using the proposed and standard
models in PSID data.’® There are four main takeaways.
First, as illustrated in the Norwegian data, the estimated parameters differ depending

on the moments used when estimating using the standard model. For example, focusing

ZThe PSID was run annually until 1997 after which it has been run only every other year.

ZNote that, unlike in the Norwegian data where cohorts were non-overlapping, in the set up here an
individual can be used in two or more panels. For example, if they have complete income data from 1970 to
1986, their data will be used in both the 1970-1984 panel and the 1972-1986 panel. To calculate bootstrapped
standard errors, we sample before building the panels.

BSomewhat reassuringly, the estimates from Norwegian data imply little age variation.

26 Appendix E.1 provides bootstrapped confidence intervals for the PSID estimates. The large sample size
of the Norwegian data makes the parameter estimate confidence bands small, and negligible next to the
large model uncertainty.
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Identity Diagonal Optimal
Level Difference | Level Difference | Level Difference

Panel A: Proposed Model
2 0.012 0.013 0.009 0.013 0.008 0.008

o erm

ol | 0049 0066 | 0059 0062 |0.043 0044
T 1.069 1137 | 1170 1169 | 1195  1.084
b 0324 0331 |0316 0337 [0330  0.350
o2, | 0.067 X 0.084 X 0.089 X

Panel B: Standard Model

e | 0012 0021 [0010 0019 [0.009  0.010
o2 | 0047 0044 |0054 0042 | 0034  0.036
o2 | 0.069 X 0.086 X 0.089 X

init

Notes: The table presents estimated parameters using the proposed and standard models on the PSID. Level and difference denote the
type of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied,
corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b are the half-life
of the passing shock and the fraction of the transitory variance that consists of a “bonus” shock. Since the PSID data only contain
even-year observations, we do not identify 6 (the moving-average coefficient) in the standard model. The table shows the mean of
parameter estimates over time.

Table 5: Estimated parameters using PSID data.

on diagonal, permanent variance is almost twice as large when estimated using difference
moments compared with level moments. In contrast, parameter estimates using our
proposed model are more similar. For example, the estimated permanent income variance
varies between 0.008 and 0.013, compared with 0.009 and 0.021 in the standard model.

Second, despite the two-year gap between surveys, we estimate the half-life of passing
shocks to be a little over one year using the proposed model. We also find that these
passing shocks make up more than half of the observed transitory income variance.

Third, as shown by Daly, Hryshko, and Manovskii (2022) and discussed extensively
above, the standard model parameters are more similar when using the optimal weighting
matrix.

Fourth, the parameter estimates from the standard model with level moments are
closest to the estimates from the proposed model, suggesting that using level moments is
the best available option if one has to rely on standard model estimates.
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Figure 6: Time-varying variance estimates, PSID data.

How do we identify the persistence of passing shocks in PSID data? The existing lit-
erature that uses first difference moments in the PSID data has found that the covariance
of income growth between differences more than two years apart is statistically insignifi-
cant. Therefore an MA(1) process is often chosen for the transitory component of income.
Our estimations find a non-zero passing shock component, despite using PSID data with
two-year intervals. One question is why our estimation finds these passing shocks to
be present if the covariances on which it is estimated are statistically insignificant. The
answer lies in the fact that our estimation makes use of all the covariances of income
growth.

Section 4.1 demonstrated that the size of the variance for any transitory shock — an
element in the diagonal of the covariance matrix — is equal to minus the sum of all the
other covariances in that row or column. It is therefore the sum of these higher order
covariances (cov(Ay;, Ay;,) for all n > 2) that is relevant to measure by how much the
standard model will underestimate the size of the transitory variance.

Although each of the higher-order covariances is individually insignificant, their sum
is statistically significant. To demonstrate this, for each of our bootstrap samples we
calculate cov(Ay;, Ay;4,) for all cohorts and years and sum these up. This value is nega-
tive in 65 out of 100 bootstrap samples, indicating that this individual covariance is not
statistically significant. However, when we calculate cov(Ay;, Ay;.,) for all2 < n < 6 and
sum up over all n, cohorts, and years, we find a negative value for all but one of our 100
bootstrap samples. That is, there is clear negative covariance between income growth in
this period and future periods more than two years out, which is ruled out in an MA(1)

specification.”’

ZWe also test if all higher-order covariances above the second order are jointly equal to zero using an
adapted version of the test in Hryshko and Manovskii (2022) and Abowd and Card (1989). We reject the
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Income risk over time. Figure 6 displays the estimated permanent, transitory, and start-
of-working-life variance over time estimated using PSID data. The main takeaway here is
the same as for the Norwegian data. While the standard model estimated with difference
moments tends to produce estimates that differ from the proposed model in levels of

income risk, the time trends are relatively similar.

7 Conclusion

The standard permanent-transitory income process has a well-known problem: it is mis-
specified because the parameter estimates depend on the type of moments used and the
weighting matrix applied. This paper proposes a parsimonious model of income dy-
namics that is more robust to the choice of moments or weighting matrix. Importantly,
the model only requires one additional parameter compared with the standard model.
Hence, one can estimate our proposed model using small data sets and include it in
heterogeneous-agent models without additional state variables.

We reiterate our conclusion for practitioners here: use our proposed model. This
model is robust when using specific moments (level or difference) and the weighing ma-
trix (optimally, diagonally, or equally weighted) applied. When interpreting the existing
literature, parameter estimates of the standard model using level moments and the iden-
tity or diagonal weighting matrix likely do a good job of decomposing permanent and
transitory income risk. In contrast, parameter estimates of the standard model using first

difference moments are likely to be biased to an economically significant extent.

null hypothesis at the 5 percent level. This test and its results are described in Appendix E.1.
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Online Appendix

A Appendix to Section 2

A.1 Further Details on the Norwegian Sample Selection

We restrict our sample to Norwegian-born males in the most stable part of their working
life — ages 35 to 50. The age restriction is somewhat more restrictive than other studies in
the literature, but we do this for several reasons. First, our large sample size allows us to
restrict our analysis to the prime of working life without sacrificing accuracy. Second, the
main focus of our paper is to reconcile known problems with the standard model, which is
best done without introducing too many age-varying complications. Third, we see strong
evidence in the Norwegian data that the type of model we analyze here —both the standard
and proposed model — does not fit our data for the young and the old. Figure A.1 shows
how the variance of income changes with age. In our models, this variance is expected to
increase with age, which it does in the age range we restrict to. However, we see income
variance declining in the 30-35 age range. Furthermore, we have found this cannot be
explained by a reduction in transitory variance. Rather, we conjecture that it might come
from mean-reversing permanent shocks as the young converge toward stable jobs from
informal or part-time work. In addition, the age group above 50 shows an increase in
permanent shocks that appears to be associated with early retirement. Further work in
these directions may be fruitful but is beyond the scope of this paper.
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Figure A.1: The variance of the income distribution by age, averaged across cohorts.

B Appendix to Section 3

B.1 Identifying the Standard Model using Level Moments

If we use level moments, the covariance structure of the permanent component is, for
t<s,

3
cov(py, ps) = var(py) = 050 + Z wa
i=1

and the covariance structure of the transitory component is (define the transitory compo-

nent as q; = & + 0¢;_1)

2

_ 2 2
var(q) = o, + 06 0%,

cov(qr, gi+1) = 007,

cov(qt, gs) = 0 ifs>t+1.

Using the independence of the permanent and transitory components of income, the co-

variance structure of log income is the sum of the covariance structure of each component

cov(Yt, Ys) = cov(py, ps) + cov(qy, gs).

One can then use these theoretical moments and find the parameters that minimize the
distance between the empirically observed moments and those implied by the model.
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C Appendix to Section 4

C.1 An Example of Exact Identification of the Proposed Model

It is possible from equations (18), (20), and (22) to identify all the parameters, except the
initial variances, from the difference moments — in fact, our model is overidentified using
all the available moments. Here, we provide a way to identify the parameters exactly if

the difference moments are known.

coo (Aytr Ayt+2) = - (1 - Ppassing) ppassing (th - ppassingai_l)

cov (Aytl A:1/t+3) = - (1 - ppassing) Piassing (G%t - ppassingaitfl)
_ . _cov (Ayt, AYies)
ppassmg - cov (Ayt, Ayt+2) .

We assume 07, = 07, and solve the above two equations with ¢ = 1 for 03, and then iterate
forward to identify o3 .
To identify U%t (the bonus shock variance), we can use the moment

cov (Ayt/ Ayf+1) = _Uét - (1 - ppassing) (alz)t - ppassingalsz)

where only a%t isnow unknown. Finally, the permanent variance isnow the only remaining

parameter and can be identified from:

2 2 2 2 2
Var(Ay;) = Oy, +0;, +0;,  +0, + (1 = 2Ppassing) Ty, -

C.2 An Alternative Passing Shock Process

In the main text, we define the passing shock process as remaining at a fixed level until it
jumps up or down to a new fixed level. We estimate the time between jumps to be about
two years, which seems too long to represent an unemployment spell. Another process
that gives rise to the same moments is one in which shocks are always positive, but when
there are no positive shocks, income returns to trend. These shocks can be thought of
as promotions — immediately after the promotion, income jumps above others. Still, the
other workers also get promoted, which reduces the size of the income residual until the
time of the next promotion. This type of process may be a better fit for the length of time
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between shocks that we estimate. Such a process can be modeled as follows:

o OpassingVt—1  With probability ppassing (A1)

v

& with probability 1 — ppassing-

The covariance matrix of this process is given by

COTJ(U,}, vs) = (Gpassingppassing)s_tgif-

That is the moments are identical to the process described in the main text except the
parameter pPpassing is multiplied by Opassing. Only the product of the two parameters is
identified with our method.

C.3 AR(1) and Passing Shock Covariance Matrices

Consider an AR(1) process

Ut = PpassingVt-1 T €t
The covariance matrix of this process is

2
v’

cov(vy, Vs) o

_ t
=p ;assing
which is the same as the covariance restriction with a passing shock in equation (21) in
the paper. Hence, the covariance matrix of an AR(1) process is isomorphic to the passing
shock process we describe in the main text, and one can reinterpret our estimate of the
passing shock as the persistence of an AR(1) process.
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D Appendix to Section 5

D.1 Replicating Daly, Hryshko, and Manovskii (2022)

As mentioned in Section 1, the paper most closely related to ours is Daly, Hryshko, and
Manovskii (2022) (DHM). Therefore, this section replicates their results on Norwegian
data by comparing estimates using moments in levels and differences. They use registry
data from Denmark and Germany, and here we aim to mimic as closely as possible the
three different sample selection criteria they apply to the Danish data.

We again use the Norwegian registry data described in section 2 and restrict our
attention to males born in Norway. As DHM do in the Danish data, we further restrict
attention to those born from 1951 to 1955 and only use income data from 1981 to 2006.
We also drop individuals whose educational status has changed during their longest spell
(discussed further below). Outliers are defined as year-to-year earnings increases of more
than 500 percent or a decrease of more than 80 percent. Individuals with earnings outliers
within their longest spell are dropped.

There are two selection criteria that DHM apply to the Danish data that we cannot
replicate exactly in the Norwegian data:

1. DHM drop records where individuals worked less than 10 percent of the year as a
full-time employee.

2. DHM remove individuals who were ever self-employed.

We handle both of these by referring to the Norwegian social security system’s definition
of a base level of income (“grunnbelep” which is abbreviated to ‘G’), used as a basis for
calculating various social security and pension benefits. The first criterion mentioned
above is handled by dropping observations where income is below 1G (approximately
USD 10,000). This should capture individuals who are only loosely attached to the labor
force during the year. The second criterion drops observations where business income is
above 1G which should capture those who are self-employed.?

DHM’s focus is on the importance of using a balanced sample, and to highlight this
they contrast estimates obtained from three different samples in their paper. The first
sample (“Balanced”) only keeps individuals where observations are available for all 26
years they consider. The second sample (“9 consec.”) constructs spells of consecutive
observations for each individual and only keeps those individuals whose longest spell

contains at least 9 consecutive observations. Only the observations within that longest

However, the measure of business income is only available from 1993. Hence, this sample selection
criterion is only applied for the years between 1993 and 2006.
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Sample Norwegian data Danish data (from DHM)

Sample 1 - Balanced 71,825 67,008
Sample 2 - 9 consec. 98,078 102,825
Sample 3 - 20 not nec. consec. 90,305 90,668

Table A.1: Number of individuals in the three samples in Norwegian and Danish data

spell are kept so there are no gaps in the resulting data set. The third sample (“20 not
nec. consec.”) keeps individuals with at least 20 income observations available but does
not require that these are consecutive. So in this sample, the “longest spell” is irrelevant,
and the data can contain gaps. Table A.1 shows the number of individuals we obtain in
the three different samples and compares them to the numbers obtained by DHM in the
Danish data.

Tables A.2, A3, and A.4 present results from estimating the standard model from
Section 3 adjusted to allow for persistent but not permanent shocks

pr = ppe-1 + P (A2)

where p can be less than 1. The estimation uses both moments in levels and differences
for each sample.

Table A.2 shows that we get similar results to DHM when we follow their approach
and use the optimal weighting matrix — that is, the inverse of the variance-covariance
matrix of the data moments — in the estimation. Columns (1) — (4) show results for the
samples with 9 or more consecutive observations and 20 or more observations that are not
necessarily consecutive. For both of these samples, we see the same patterns that DHM
report for the Danish data: The estimated persistence and variance of the permanent
shock as well as the estimated persistence of the transitory shock are higher when using
difference moments, while the estimated variance of the transitory shock is higher when
using moments in levels. Columns (5) and (6) show that these differences disappear when
using the balanced sample where individuals are only included if data is available for all
26 years. Thus the estimation of Norwegian registry data gives results very similar to the
ones obtained by DHM for Danish (and German) data.

Tables A.3 and A.4 show that using a different weighting matrix in the estimation—
respectively the inverse of a diagonal weighting matrix using only the variance of the data
moments and the identity matrix—does not yield the same results as in DHM. In both
estimations, we get that using difference moments leads to a higher estimated variance of

the permanent shock and a lower estimated variance of the transitory shock even in the
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9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.
P 0.952 0.990 0.967 0.981 0.970 0.975
(0.001) (0.0003) (0.0006) (0.0005) (0.0006) (0.0008)
a}%erm 0.010 0.015 0.008 0.013 0.006 0.006
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
6 0.221 0.250 0.195 0.263 0.273 0.272
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)
afran 0.017 0.009 0.019 0.010 0.009 0.009
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Uith 0.025 — 0.027 — 0.025 —
(0.0004) — (0.0004) — (0.0004) —

Notes: The parameter p is the persistence of the permanent component, and 6 is the moving-average coefficient. Asymptotic standard
errors are in parentheses.

Table A.2: Estimated parameters using Norwegian data and DHM’s sample selection
criteria. Weighting matrix = DHM (= optimal weighting matrix).

balanced sample. The estimated values of persistence also depend on the moments used,
but the ranking differs depending on the weighting matrix.

That the choice of weighting matrix affects the estimation results in this way is yet
another indication that the standard model is misspecified and that simply using a bal-
anced panel does not fix the issue. We remain convinced that using a balanced panel is
important for the reasons pointed out by DHM, but the observation that the estimated
values in columns (5) and (6) of table A.2 are the same does not necessarily imply that
these estimates are correct. As shown in the estimation on simulated data presented in
table 3, obtaining the same estimated values using moments in levels and differences does

not guarantee that the estimations recover the true parameter values.
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9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.
P 0.968 0.990 0.977 0.889 0.979 0.828
(0.0008) (0.0003) (0.0007) (0.0022) (0.0008) (0.0036)
af,erm 0.008 0.017 0.006 0.017 0.005 0.011
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
7] 0477 0.233 0.440 0.206 0.737 0.211
(0.006) (0.003) (0.006) (0.005) (0.019) (0.005)
o%m 0.023 0.009 0.026 0.008 0.012 0.007
(0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001)
afmt 0.025 — 0.029 — 0.026 —
(0.0004) — (0.0004) - (0.0004) -

Notes: The parameter p is the persistence of the permanent component, and 6 is the moving-average coefficient. Asymptotic standard
errors are in parentheses.

Table A.3: Estimated parameters using Norwegian data and DHM’s sample selection

criteria. Weighting matrix = diagonal.

9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.
P 0.969 0.992 0.981 0.987 0.983 0.988
(0.0008) (0.0003) (0.0008) (0.0004) (0.0008) (0.0005)
af,erm 0.007 0.018 0.006 0.018 0.005 0.011
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
7] 0.466 0.239 0.460 0.239 0.726 0.245
(0.006) (0.003) (0.006) (0.003) (0.017) (0.004)
ofm 0.024 0.010 0.028 0.010 0.014 0.008
(0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
afmt 0.026 — 0.031 — 0.027 —
(0.0004) — (0.0004) - (0.0004) -

Notes: The parameter p is the persistence of the permanent component, and 6 is the moving-average coefficient. Asymptotic standard
errors are in parentheses.

Table A.4: Estimated parameters using Norwegian data and DHM’s sample selection

criteria. Weighting matrix = identity.
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D.2 Sketch Proof of Proposition 1

This proof aims to show that using the optimal minimum distance estimator will give the
same parameter estimates regardless of using level or difference moments when each in-
dividual has sufficient panel observations. There are two steps in the proof. We first show
that the optimal minimum distance estimator gives the same result when the moments
are transformed by an invertible linear mapping. We next show that one can construct
an invertible linear mapping that transforms level moments into difference moments but
includes some additional terms. However, as we add more panel observations, the con-
tribution of these additional terms converges to zero such that the optimal minimum
distance estimator will yield the same result regardless of which moments are used.

Assume that Y = (y4, ..., yT)' is a random variable, that f(Y) is a function that generates
data moments from Y, and that g(0) is a function generating model moments for a set of
parameters 0. We can then formulate the original optimal minimum distance problem
(OMD) as

argmin E((Y) - g(0)) Q"E(f(Y) - 3(0))

where Q = E((f(Y) = E(F(V)(F(Y) - E(F(Y))) ).

Now, for any invertible linear map A, we have

Objective = E(f(Y) - g(6)) Q' E(f(Y) - g(6)) (A3)
= E(f(Y) - g(6)) A'(A) ' QAT AE(f(Y) - 4(6)) (A4)
= E(Af(Y) - Ag(6)) (AQA) 'E(Af(Y) — Ag(6)) (A5)
= E(Af(Y) - Ag(6)) Q' E(Af(Y) -~ Ag(6)) (A.6)

where Q = IE((A fY)=EAfY)AfFY) - EAf (Y)))'). Hence, solving the optimal mini-

mum distance problem of f(Y) and g(0) is equivalent to solving it for Af(Y) and Ag(0).
To show that the level and difference moments give the same estimates under the

optimal minimum distance estimator, we have to show that there exists such an A trans-

forming level moments into difference moments. The level moments are defined as
f(Y) = vech (Y' Y)
and the difference moments are defined as

F(AY) = vech ((AY) (AY)).
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Since Y is of length T and AY is of length T — 1, f(Y) and f(AY) have different dimensions
and there does not exist any invertible A such that Af(Y) = f(AY). However, we can

construct an invertible linear mapping A with some extra terms:

Af(Y) = [yi V1AY1, yi1AYo, ..., y1Ayr, f(AY)].

Given that AY is an ergodic process, as T — oo the variance of parameter estimates that can
be identified using the optimal weighting matrix on the difference moments eventually
declines linearly with T. Ergodicity also implies that y;Ayr goes to zero in expectation as
T — oo. Thus, as T — oo, these extra terms available to the optimal minimum distance
estimator eventually do not help to reduce the parameter variance. Therefore, as T — oo,
the optimal minimum distance parameter estimates using levels must converge to those
using first differences.

This proof does not apply to other weighting methods, such as equal or diagonal. For
a generic weighting matrix Q, it is not the case that AQA’ is the counterpart weighting

matrix under an invertible linear map A.

D.3 Importance of T for Proposition 1

Proposition 1 explains how the parameter estimates of the standard model become sim-
ilar when using the optimal weighting matrix. The result hinges on the assumption
that T — oo, while T is typically small in practical applications. We, therefore, include
Figure A.2 which illustrates how the parameter estimates of permanent and transitory
variance depend on the size T when estimating the standard model using the optimal
weighting matrix in simulated data from the proposed model. We use the same parame-
ters in the simulation as in Section 5, but vary the T.

For small T, the difference between the parameter estimates is quite large. This dif-
ference decreases gradually as we increase T. For T = 16, as in Section 5, the parameter
estimates are reasonably close. Figure A.2 also illustrates that while the parameter esti-
mates converge, they donot converge to the correct value in the simulation, illustrating the
general point that convergence of parameter estimates does not imply correct parameter

estimates if the model is misspecified.

D.4 Sketch Proof of Proposition 2

Suppose the data-generating process for income consists of initial permanent income, a

permanent income component that follows a random walk, and transitory shocks. The
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(a) Permanent income variance. (b) Transitory income variance.

Notes: The figures show estimated permanent and transitory shock variance using the standard model on simulated data with varying
panel length (T). Level and difference denote the type of moments used, corresponding to (10) and (11), respectively.

Figure A.2: Importance of T for Proposition 1.

transitory component, v;, is defined such that the covariances of order T tends to zero as
T — oco. Formally, given any 6 > 0, there exists a Ts such that cov(vy, v14x) < 6 for all k > Ts.
Assume that Y = (o, y1, ..., yr) is random variable of length T generated from this income

process. The covariance matrix for this process can be summarized as:

0ar(Ys) = Opyip + 10 ey + O (A7)
cov(Y, Yi+s) is unconstrained ifs<Ts (A.8)
lcov(ys, Yiss) — 07 — toierml < ifs>Ts (A.9)

Then, cov(y;, yivs) for s > Ts will provide information only about the initial permanent
variance and the variance of permanent innovations. Any model that assumes a unit
root will therefore identify the parameters of this process from these covariances. Using
the identity matrix as the weighting matrix ensures that these covariances always have a
non-zero weight.

For example, consider the standard model with an MA(1) transitory process but where
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all parameters are constant across time. Then

var(y) = o, + toy, + (1 + 60%)a? (A.10)
cov(Yt, Yis1) = o*%o + tafp + 002 (A.11)
oY, Yiss) = Oy, + L0y, if1<s<T; (A.12)
cov(Yt, Yiss) = 0'50 + tofp ifs>Ts (A.13)

In this case, the transitory part of the income process is misspecified because (A.12)
assumes that there is no influence of transitory shocks on this covariance, while there
is such an influence in the data-generating process. Using this model, the permanent
variance will be identified from equations (A.12) and (A.13). As T — oo, it will be entirely
identified by (A.13) because the relative weight assigned to (A.12) will go to zero (T — oo
but T is fixed, and the weight on cov(y;, y:+s) will tend to a fixed positive number under

the identity weighting matrix). As (A.13) is identical to (A.9) up to an arbitrarily small

2

error, 9, the estimation of g,,,,,,

and o2 . will be consistent.

D.5 The Relevance of Proposition 2 in Practice

Proposition 2 states that the standard model, under the equally-weighted estimator using
level covariances, provides unbiased estimates for the permanent variance as the panel
length tends to infinity. However, it does not guide how long the panel needs to be in
practice for reasonable parameter values. Intuitively, if the panel dimension is too short
or the passing shock is too large and persistent, the parameter estimates will be biased
because there are not enough ‘long’ covariances to identify the permanent variance.

In the context of our proposed model, the extent of bias depends on a combination
of model parameters and the length of the panel. Here, we test the extent of the bias
for different values of the parameters along three dimensions: persistence of the passing
shock, size of the passing shock, and length of the panel.

Passing shock persistence. Here, we estimate the standard model using the identity
matrix on simulated data from the proposed model. We use the same parameters as in
Section 5 but vary the half-life of the passing shock .

Figure A.3 illustrates the bias on permanent and transitory shock variance as we
increase the half-life of the passing shock. For the values of half-life we estimate in the
paper and used in the simulation, the bias is relatively small, around 5% for the permanent
shock and 10% for the transitory shock. This bias increases as the half-life of the passing
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shock increases, especially for the transitory shock variance.
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(a) Permanent income variance bias. (b) Transitory income variance bias.

Notes: The figures show estimated permanent and transitory shock variance bias using the standard model on simulated data with
varying passing shock half-life (7). The estimation uses level moments (10) and the equally-weighted minimum distance method.

Figure A.3: Importance of T (Half-life of Passing Shock) for Proposition 2.

Size of passing shock and length of panel. Figure A.4 shows the size of the bias—for
T = 16 and T = 40—in the case that the passing shock variance is much larger than
we estimate in the Norwegian data, up to 0.24, while the permanent and bonus shock
variances remain unchanged relative to our simulations in section 5. The size of the
permanent shock variance bias rises almost linearly with the size of the passing shock
variance. As a result, this bias is small for the size of passing shock that we estimate in the
Norwegian data, but can grow large for extreme values for the size of the passing shock
variance. When the passing shock variance is 0.24, this bias is as large as 70 percent for
T =16 and 20 percent for T = 40.

D.6 Further Simulation Results
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Notes: The figures show estimated permanent and transitory shock variance bias using the standard model on simulated data with
varying passing shock variance. The estimation uses level moments (10) and the equally-weighted minimum distance method.

Figure A.4: Importance of the size of the passing shock variance for Proposition 2.

This Appendix present results of estimating the standard model in simulated data
when the simulated model has a shorter panel (T=5) or includes a persistent, but not
permanent income process.

Specifically, in the simulation of a persistent income process, we replace (14) with the
following

Pt = ppi-1 + Py (A.14)

with p € [0, 1).

Table A.5 shows estimation results for the standard model for simulations with varying
panellength and when we introduce some decay to the permanent shock in the simulation.
The estimation results reported are for the standard model where we assume in the
estimation that p = 1.

Two results are noteworthy. First, reducing the panel size to T = 5 results in the level
estimation mildly underestimating the transitory income variance, while the difference
estimates are unchanged and remain far from the true parameter values. Second, if the
‘permanent” income shock decays even slowly over time, estimating the standard model
with p = 1, especially for long panels, results in an overestimation of the transitory
variance and an underestimation of the permanent variance when using level moments.

The difference estimates are little changed.
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Identity Diagonal Optimal
Parameter True Value Level Difference Level Difference Level Difference
Panel A: T=5,p=1
02 erm 0.005 0.005 0.012 0.005 0.012 0.008 0.011
Ofan 0.038 0.028 0.020 0.028 0.020 0.024 0.021
T 2.0 years X X X X X X
b 0.40 X X X X X X
e X 0.25 0.08 0.25 0.08 0.15 0.09
aiznit 0.065 0.074 X 0.073 X 0.071 X
Panel B: T =16, p = 0.97
O2erm 0.005 0.002 0.011 0.002 0.011 0.005 0.007
O-tgran 0.038 0.040 0.020 0.041 0.020 0.026 0.024
T 2.0 years X X X X X X
b 0.40 X X X X X X
0 X 0.55 0.07 0.57 0.07 0.18 0.15
aiznit 0.065 0.049 X 0.048 X 0.041 X
Panel C: T =5, p =0.97
0% e 0.005 0.003 0.011 0.003 0.011 0.006 0.011
a?mn 0.038 0.031 0.020 0.032 0.020 0.026 0.021
T 2.0 years X X X X X X
b 0.40 X X X X X X
e X 0.28 0.08 0.28 0.08 0.18 0.10
aiznit 0.065 0.059 X 0.059 X 0.056 X

Notes: The table presents estimated parameters using the standard models on data generated for 200,000 individuals from the proposed
model. ‘“True Value’ refers to the parameters used in the data-generating process. Level and difference denote the type of moments
used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied, corresponding
to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b are the half-life of the passing
shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter 6 is the moving-average coefficient.

Table A.5: Estimated standard-model parameters using simulated data.

E Appendix to Section 6

E.1 Further detail on the PSID data and results

Table A.6 shows the PSID estimation results for both

the proposed and standard model, level and difference moments, along with their boot-

Bootstrapped standard errors.
strapped confidence intervals in parentheses below.

Statistical significance of higher-order covariances. We run two tests to show that
higher-order covariances are statistically significantly different from zero. The first test,

described in the main text, is to sum up all the higher order covariances in all our bootstrap
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Identity Diagonal Optimal
Level Difference Level Difference Level Difference
Panel A: Proposed Model
U%erm 0.012 0.013 0.009 0.013 0.008 0.008
(0.010, 0.014) (0.008, 0.016) (0.008, 0.011) (0.009, 0.015) (0.006, 0.008) (0.005, 0.009)
Ufmn 0.049 0.066 0.059 0.062 0.043 0.044
(0.042, 0.056) (0.052, 0.075) (0.050, 0.064) (0.049, 0.067) (0.030, 0.041) (0.033, 0.047)
T 1.069 1.137 1.170 1.169 1.195 1.084
(0.967,1.131) (1.038, 1.336) (1.006, 1.244) (1.057, 1.489) (1.023, 1.419) (0.922,1.657)
b 0.324 0.331 0.316 0.337 0.330 0.350
(0.319, 0.338) (0.294, 0.418) (0.312, 0.337) (0.307, 0.390) (0.302, 0.360) (0.287,0.447)
aiznit 0.067 X 0.084 X 0.089 X
(0.056, 0.085) X (0.072, 0.098) X (0.076, 0.098) X

Panel B: Standard Model

Operm 0.012 0.021 0.010 0.019 0.009 0.010
(0.010, 0.014) (0.016, 0.025) (0.008, 0.011) (0.015, 0.022) (0.007, 0.009) (0.008,0.011)

a2 0.047 0.044 0.054 0.042 0.034 0.036
(0.040, 0.053) (0.036, 0.051) (0.046, 0.058) (0.032, 0.047) (0.022,0.033) (0.025,0.034)

a2 0.069 X 0.086 X 0.089 X
(0.058, 0.088) X (0.074,0.101) X (0.068, 0.090) X

Notes: The table presents estimated parameters using the proposed and standard models on the PSID. Level and difference denote the
type of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied,
corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b are the half-life
of the passing shock and the fraction of the transitory variance that consists of a “bonus” shock. Since the PSID data only contain
even-year observations, we do not identify 0 (the moving-average coefficient) in the standard model. The table shows the mean of
parameter estimates over time.

Table A.6: Estimation using PSID with bootstrapped standard errors.

samples and count how many are negative. The second, described in detail below, is an
adapted version of the test for higher-order covarainces being jointly equal to zero, as
found in Hryshko and Manovskii (2022) and Abowd and Card (1989).

We cannot directly run the test in Abowd and Card (1989) because of the way that
we create our balanced panels in the PSID data. As described in the main text, for each
panel we select all individuals who have a complete set of data for the panel’s time period
and, as such, an individual can appear in more than one panel. For the adapted test we
run here, we create one large panel in a slightly modified way. First, for each individual
we select at random one of the periods in which he has a complete set of data for six
consecutive waves of the PSID. We then stack all these individual’s income outcomes in
one large panel and calculate a single 6 by 6 covariance matrix. We then run the test of
joint significant for all higher-order covariances (n > 2). Note that this test does not use
all the data, as we only allow each individual’s data for 6 waves so that we can achieve
a balanced panel. We run this test 40 times, each time with a different random choice

for the period we choose for each individual. The average of these tests rejects the null
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hypothesis at the 5 percent level (the chi-squared statistic 18.8, greater than the 18.3 level

for statistical significance at the 5 percent level with 10 degrees of freedom).

Sample in relation to existing literature. We start with the same selection criteria as
that in Moffitt and Zhang (2018) and then select for individuals who have at least six
consecutive waves of data available in the PSID. Figure A.5 shows the variance of two-
year changes in the log income residual in four ways. First, using the sample selection
criteria of Moffitt and Zhang (2018). This line closely matches that in Figure 1 of Moffitt
and Zhang (2018) except we only show the even-year variances. Second, we show the
two-year variances under our extra criteria that we maintain balanced panels over 6-wave
periods. This criterion reduces the level of volatility in our sample relative to Moffitt and
Zhang (2018). The final two lines show the model-implied two-year variances for both
our proposed model and the standard model when both are estimated on the difference
moments. Both models closely match the two-year variances.

The time-series of permanent and transitory shock variance estimates shows a similar
pattern that that in Moffitt and Zhang (2018), despite the extra selection criterion. The
pattern is different to that in Heathcote, Perri, and Violante (2010) because they use
different underlying data. The primary difference is that, unlike our paper and Moffitt
and Zhang (2018), Heathcote, Perri, and Violante (2010) estimate the standard model on
hourly wages instead of total labor income.
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Figure A.5: Two-year income variance.
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E.2 Estimation using persistent (but not permanent) shocks

The paper restricts attention to estimating income processes where the permanent compo-
nent is a unit root. In this appendix, we present the paper’s main results when we allow
the persistent part of the income process to have an arbitrary persistence.

Identity Diagonal Optimal
Level Difference Level Difference Level Difference

Panel A: Proposed Model

e | 0.003 0.008 0.003 0.005 0.003 0.005
o2 | 0041 0.028 0.041 0.035 0.038 0.032
T 2238 1.469 2.328 1.910 2.206 1.626
b 0.296 0.541 0.297 0.426 0.372 0.434
p 1.000 0.965 1.000 0.988 0.998 0.988
02 0.061 X 0.060 X 0.058 X

Panel B: Standard Model

e | 0.010 0.014 0.010 0.015 0.011 0.010
o | 0022 0.017 0.022 0.016 0.019 0.019
0 0.216 0.026 0.233 0.000 0.088 0.092
p 0.923 0.894 0.921 0.809 0.926 0.952
o2 | 0.063 X 0.062 X 0.058 X

Notes: The table presents estimated parameters using the proposed and standard models on Norwegian data. Level and difference
denote the type of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting
matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b
are the half-life of the passing shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter p is the
persistence of the permanent component, and 0 is the moving-average coefficient. The table shows the mean of parameter estimates
over time and age.

Table A.7: Estimation with persistent, but not permanent shock.

Specifically, we adjust the permanent component of both income processes to be

Pr = ppi-1 + Py (A.15)

where the estimation allows for a p that can be different from 1.
Table A.7 presents the estimated income processes on Norwegian data when we allow
for a p < 1. The proposed model provides consistent estimates of the model parameters

even in this more general case. In particular, across all combinations of moments and

51



weighting matrices applied, the estimates of p are close to 1, and the estimated permanent
and transitory variances are stable.

In contrast, estimates of the standard model vary more depending on moments, and
weighting matrices applied. For example, the estimates of p vary from 0.81 to 0.95.
The estimates of the permanent variance also vary more. However, when adjusted for
the persistence of the permanent component (annual variance = Ulz)erm/ (1 - p?)), they are
only slightly higher than the permanent variance estimates from the proposed model.
Moreover, when we estimate using the optimal weighted minimum distance method, we

get similar results regardless of the moments used, as discussed in Proposition 1.

Identity Diagonal Optimal

Parameter True Value Level Difference Level Difference Level Difference
0% erm 0.005 0.008 0.014 0.008 0.014 0.012 0.012
Otan 0.038 0.029 0.018 0.029 0.018 0.020 0.020

T 2.0 years X X X X X X

b 0.40 X X X X X X

e X 0.29 0.05 0.31 0.05 0.09 0.08

P 1.00 0.97 0.94 0.97 0.94 0.95 0.96
aiznit 0.065 0.065 X 0.066 X 0.067 X

Notes: The table presents estimated parameters using the standard models on data generated for 200,000 individuals from the proposed
model. ‘“True Value’ refers to the parameters used in the data-generating process. Level and difference denote the type of moments
used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting matrix applied, corresponding
to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b are the half-life of the passing
shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter 6 is the moving-average coefficient,
and p is the persistence of the permanent component.

Table A.8: Estimation of the standard model with persistent shocks using simulated data.

Table A.8 also presents the results when we simulate the proposed model and estimate
the standard model. Compared with the data-generating process, the standard model,
in this case, tends to underestimate the persistence of the permanent component. Fur-
thermore, the standard model tends to overestimate permanent variance somewhat and
underestimate the transitory variance, suggesting that some of the transitory shocks in
the model are misrepresented as permanent shocks when estimated using the standard
model. This pattern of misrepresented shocks was also present in the simulation exercise

in the body of the paper.

52



Identity Diagonal Optimal
Level Difference Level Difference Level Difference

Panel A: Proposed Model

e | 0.003 0.004 0.003 0.005 0.003 0.004
o2 | 0.044 0.046 0.043 0.045 0.044 0.040
T 1.572 2.377 1.779 2.230 2.279 1.900
b 0.377 0.478 0.366 0.489 0.467 0.503
o2 0.063 X 0.063 X 0.060 X

Panel B: Standard Model

e | 0.004 0.012 0.004 0.012 0.005 0.007
o2 | 0038 0.023 0.037 0.023 0.025 0.024
6 0.480 0.055 0.571 0.056 0.157 0.138
o2 0.063 X 0.063 X 0.060 X

Notes: The table presents estimated parameters using the proposed and standard models on Norwegian data. Level and difference
denote the type of moments used, corresponding to (10) and (11), respectively. Identity, diagonal, and optimal denote the weighting
matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The parameters 7 and b
are the half-life of the passing shock and the fraction of the transitory variance that consists of a “bonus” shock. The parameter 6 is
the moving-average coefficient. The table shows the mean of parameter estimates over time and age.

Table A.9: Estimated parameters using the Norwegian data. Sample including extreme-
income-change outliers.

E.3 Estimation results without removing outliers

In the text, the sample from the Norwegian administrative data contains 536,399 Nor-
wegian males from 27 cohorts born between 1937 and 1963. We arrive at this sample
after dropping individuals that ever experience an extreme income change as described
in Section 2. Table A.9 contains estimates of both the proposed and the standard model
on a similar sample where we do not exclude individuals who experience an extreme
income change. This sample contains 544,341 individuals, so excluding outliers in the
main sample removes about 1.5 percent.

Comparing the results in Table A.9 with those presented in panels A and D in Table 4,
we see that the results do not change much. The main difference is that when the extreme
income changes are included in the sample, the estimates of the transitory variance are
slightly higher. None of the conclusions regarding the choice of moments and weighting
matrix in either the standard or the proposed model are affected.
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